

Excelitas' Large Area PIN Diodes are highly sensitive, low capacitance InGaAs diodes that provide high responsivity from 800 nm to 1700 nm. An ultra-low capacitance version for high bandwidth applications is available upon request.

Key Features

- Ultra-low capacitance option
- High responsivity at 1300 nm and 1550 nm
- Active Area diameter from 0.5 mm to 5 mm
- High linearity over large dynamic range
- Available in various, robust TO packages
- Customizations (e.g. TEC attachment) possible
- RoHS compliant

Applications

- Optical Power Meter
- Fiber Optic Test Communication
- Near-IR spectroscopy
- Laser profiling stations
- Instrumentation
- Lidar

All specifications are referring to an ambient temperature of $T_A = 22 \text{ °C}$, $\lambda = 1550 \text{ nm}$ and typical V_{OP} .

Table 1: Key parameters

Parameter	Symbol	Min	Тур	Max	Unit
Operating Voltage ¹	V _{OP}	0	5	V _{BD} - 5 V	V
Spectral Range	Δλ	800		1700	nm
Peak Responsivity	λ_{peak}		1550		nm
	R ₈₅₀	0.10	0.20		
Responsivity	R ₁₃₀₀	0.80	0.90		A/W
	R ₁₅₅₀	0.95	1.05		

Note 1: The depletion voltage can be substantial higher. To find the best operation point, refer to Figure 8 or contact our experts at Excelitas Technologies.

Large Area InGaAs PIN Photodiodes

Table 2: Ordering Info	rmation						
Parameter	C30619GH	C30641GH	C30642GH	C30665GH	C30723GH		
Active Area Shape		Circular					
Useful Area	0.2 mm ²	0.8 mm ²	3.1 mm ²	7.0 mm ²	19.6 mm ²		
Useful Diameter	0.5 mm	1.0 mm	2.0 mm	3.0 mm	5.0 mm		
Ultra-low	C30619GH-LC	C30641GH-LC	C30642GH-LC	C30665GH-LC			
capacitance	C20013GH-LC	C300410H-LC	C300420H-LC	C30003GH-LC			
Single Stage TEC ^{1,3}	C30619GH-TC	C30641GH-TC	C30642GH-TC	C30665GH-TC			
Double Stage TEC ^{2,3}	C30619GH-DTC	C30641GH-DTC	C30642GH-DTC	C30665GH-DTC			
Package Type	TO	-18	TO-5 T				
-TC / -DTC Package		TO-66 flange outline					
Window Type		Flat Glass					

Note 1: The single stage TEC cools the diode chip to typically 0 °C.

Note 2: The double stage TEC cools the diode chip to typically -20 °C.

Note 3: Adding a TEC to the PIN diode will significantly reduce dark current, dark noise and NEP.

Only available upon special request. Contact our experts at Excelitas for further information.

Table 3: Absolute Maximum Ratings

Parameter	Symbol	Value	Units
Average Forward Current	lF	10	mA
Total Power dissipation	P _{tot}	100	mW
Average Photocurrent	Ι _Ρ	100	mA
Storage Temperature	Ts	-60 125	°C
Operating Temperature	T _{Op}	-40 85	°C
Soldering Temperature ³	Τ _P	260	°C

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

Note 2: Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 3: 5 seconds, leads only

Large Area InGaAs PIN Photodiodes

Parameter	Symbol	Device	Minimum	Typical	Maximum	Units	
		C30619GH		1			
		C30619GH-LC		0.5			
		C30641GH		5			
		C30641GH-LC		2			
Rise Time / Fall Time ¹	t _r /t _f	C30642GH		17		ns	
		C30642GH-LC		9			
		C30665GH		35			
		C30665GH-LC		17			
		C30723GH		117			
		C30619GH		350			
		C30619GH-LC		700			
		C30641GH		75			
		C30641GH-LC		150			
Bandwidth	f _{3dB}	C30642GH		20		MHz	
		C30642GH-LC		40			
		C30665GH		10			
		C30665GH-LC		20			
		C30723GH		3			

Note 1: As estimated by $t_{r/f} = \frac{0.35}{f_{3dB}}$

The following notes apply for all electrical specifications:

- Note 1: Dark current measurements are done at V_{OP} = 5 V on C30619GH, C30641GH, C30642GH and C30665GH. On the C30723GH V_{OP} = 1 V.
- **Note 2:** Due to the natural fluctuations of charge carriers the PIN diode will also generate noise when not illuminated. Since the noise characteristics and hence the signal-to-noise ratio (SNR) are dependent on the bandwidth (f_{3dB}) and operating wavelength (λ) inside the final system the illuminated noise

$$i_{ill} = \sqrt{2qf_{3dB}(i_D + R(\lambda)P)}$$

needs to be considered. Hence the SNR is defined as

$$SNR = \frac{i_p^2}{i_{lll}^2} = \frac{(PR(\lambda))^2}{i_{lll}^2}$$

with q the charge carrier and P the incident optical power in W.

- Note 3: The NEP is specified in dark conditions ad defined as $NEP = \frac{i_N}{R(\lambda)}$
- **Note 4:** Measured at VOP = 10 mV. Selected devices with higher shunt resistance are available to special order. Contact our experts at Excelitas.

Table 5: Electrical Specification C30619GH, C30619GH-LC, C30619GH-TC/(-DTC) Parameter Symbol Minimum Typical Maximum Units V **Breakdown Voltage** V_{BD} 20 C_{0V} 15 Capacitance, standard version 7 C_{5V} 6 C_{25V} рF 15 C_{OV,LC} 5 Capacitance, ultra-low option C_{5V,LC} 2 C_{25V, LC} Dark Current¹ 0.3 20 nA İD pA/√Hz Dark Noise² 0.10 İΝ 0.02 NEP₈₅₀ 100 Noise Equivalent Power³ fW/√Hz NEP₁₃₀₀ 22 NEP1550 19 Shunt Resistance⁴ Rs 10 MΩ

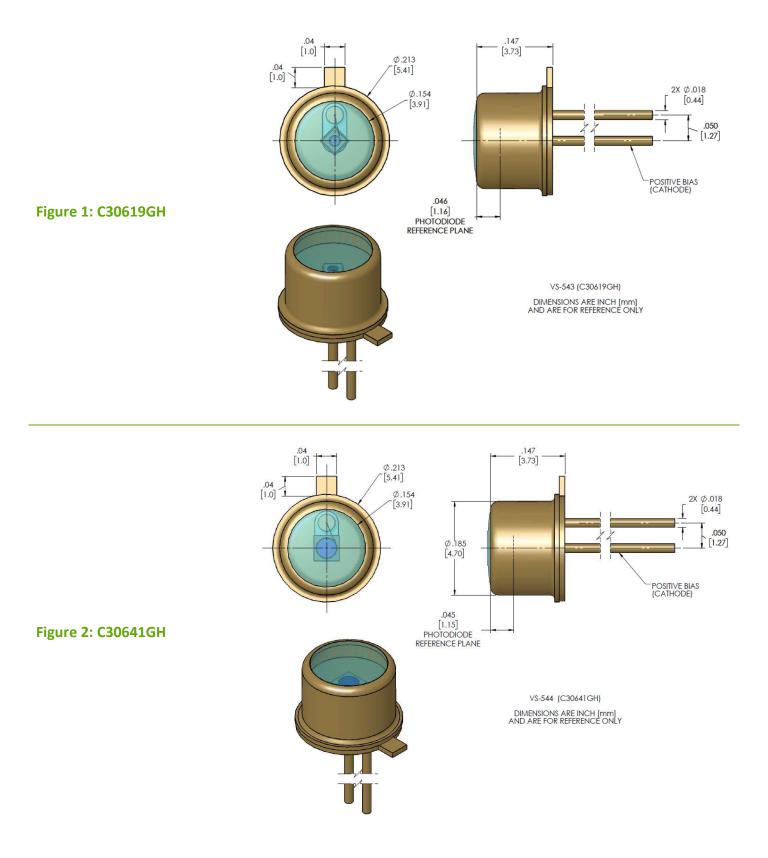
Table 6: Electrical Specification C30641GH, C30641GH-LC, C30641GH-TC/(-DTC)

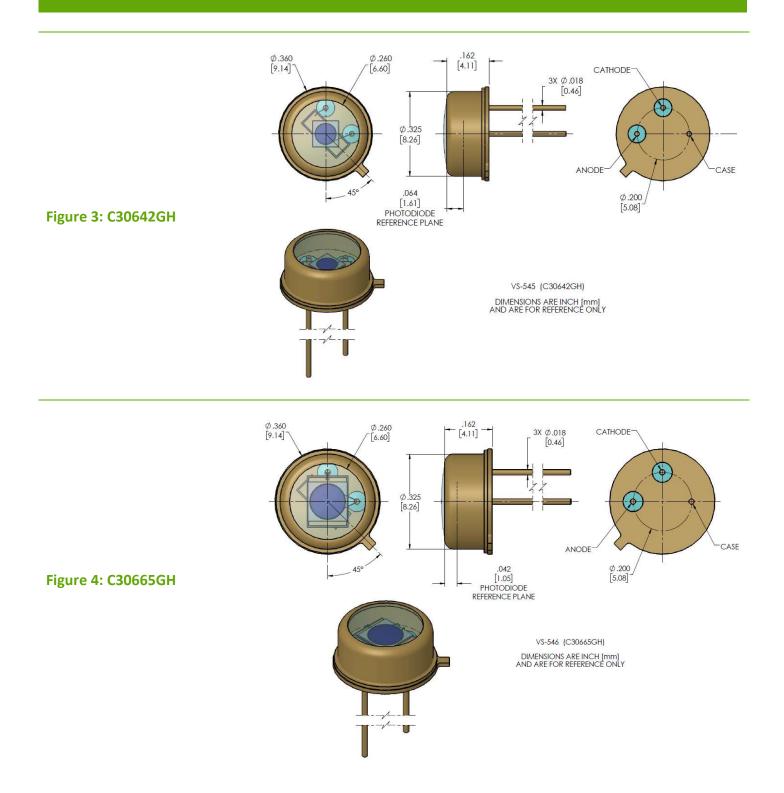
Parameter	Symbol	Minimum	Typical	Maximum	Units
Breakdown Voltage	V _{BD}	20			V
	C _{0V}		60		
Capacitance, standard version	C _{5V}		22		
	C _{25V}		20		~F
Capacitance, ultra-low option	C _{OV,LC}		60		pF
	C _{5V,LC}		18		
	C _{25V, LC}		9		
Dark Current ¹	iр		1	50	nA
Dark Noise ²	i _N		0.04	0.15	pA/√Hz
Noise Equivalent Power ³	NEP ₈₅₀		200		
	NEP ₁₃₀₀		44		fW/√Hz
	NEP ₁₅₅₀		38		
Shunt Resistance ⁴	Rs	5			MΩ

Parameter	Symbol	Minimum	Typical	Maximum	Units
Breakdown Voltage	V _{BD}	15			V
Capacitance, standard version	C _{OV}		400		
	C _{5V}		90		
	C _{25V}		75		
Capacitance, ultra-low option	C _{0V,LC}		300		– pF
	C _{5V,LC}		77		
	C _{25V, LC}		36		
Dark Current ¹	i _D		2		nA
Dark Noise ²	i _N		0.03	0.15	pA/√Hz
Noise Equivalent Power ³	NEP ₈₅₀		150		
	NEP ₁₃₀₀		33		fW/√Hz
	NEP1550		29		1
Shunt Resistance ⁴	Rs	2			MΩ

Table 8: Electrical Specification C30665GH, C30665GH-LC, C30665GH-TC/(-DTC)

Parameter	Symbol	Minimum	Typical	Maximum	Units
Breakdown Voltage	V _{BD}	10			V
Capacitance, standard version	C _{OV}		530		
	C _{5V}		200		
	C _{25V}		170		ъГ
Capacitance, ultra-low option	C _{OV,LC}		530		pF
	C _{5V,LC}		165		
	C _{25V, LC}		77		
Dark Current ¹	i _D		5		nA
Dark Noise ²	i _N		0.04	0.20	pA/√Hz
Noise Equivalent Power ³	NEP ₈₅₀		200		
	NEP ₁₃₀₀		44		fW/√Hz
	NEP ₁₅₅₀		38		1
Shunt Resistance ⁴	Rs	1			MΩ


Table 9: Electrical Specification C30723GH


Parameter	Symbol	Minimum	Typical	Maximum	Units
Breakdown Voltage	V _{BD}	10			V
Capacitance	C _{2V}		950		pF
Dark Current ¹	i _D		20		nA
Shunt Resistance ⁴	Rs	1			MΩ

www.excelitas.com

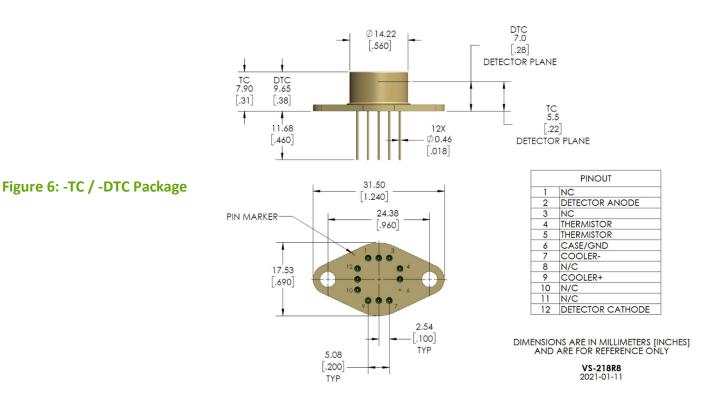
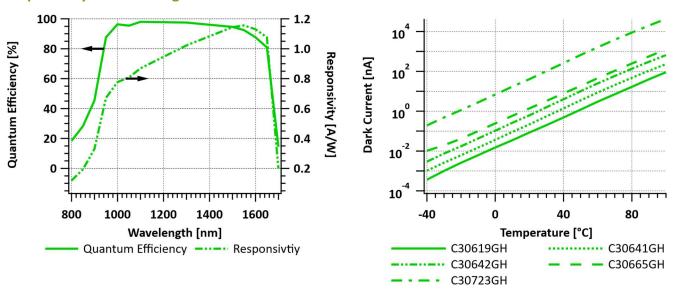

C30619_641_642_665_723_revision 2021-05

Table 9: Mechanical Dimensions

.6 [15.2] Ø.600 .183 15.24 4.65 CASE .200 [5.08] Ø.550 [13.97] 3x Ø.018 [0.46] ANODE CATHODE Ø.432 .400 .089 [10.97] [10.16] Figure 5: C30723GH [2.26] PHOTODIODE REFERENCE PLANE VS-279 C30723GH DIMENSIONS ARE IN [mm] AND ARE FOR REFERENCE ONLY



www.excelitas.com

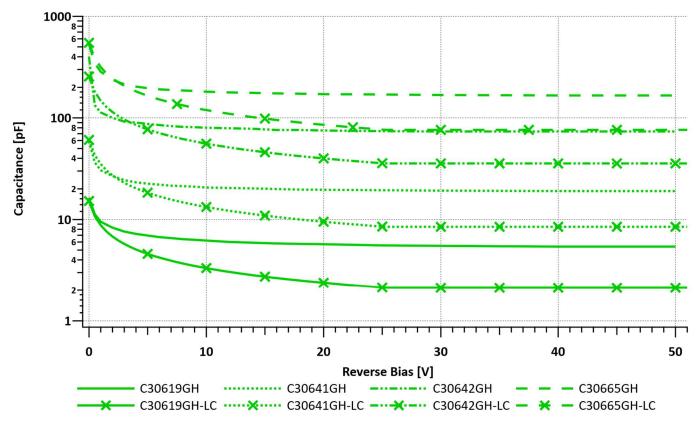

Figure 7: Typical Quantum Efficiency and Typical

Figure 8: Typical Dark Current vs. Temperature

Responsivity vs. Wavelength

Figure 9: Typical Capacitance vs. Bias Voltage

Large Area InGaAs PIN Photodiodes

Information

Excelitas Technologies' Large Area PIN Photodiodes type C30619GH, C30641GH, C30642GH, C30665GH and C30723GH are high responsive, low capacitance InGaAs detectors. They are specially designed for measurement applications as optical power meters, fiber optic test equipment, near IR-spectroscopy and instrumentation.

Their planar passivated structure feature low capacitance for extended bandwidth and a high shunt resistance for maximum sensitivity. Typical devices feature well than 1% non-linearity to optical powers of greater than +13dBm (20 mW) and uniformity within 2% across the detector active area. Typical responsivity of 0.2 A/W at 850 nm for our large area InGaAs devices allows use of a single detector in fiber optic test instrumentation designed to operate at 850 nm, 1300 nm and 1550 nm.

Optional ultra-low capacitance devices are available (-LC option). They feature only half of the standard type capacitance, therefore exhibiting twice the 3 dB bandwidth.

Devices are available with active areas from 0.5 mm to 5.0 mm in hermetic TO packages.

Recognizing that different applications have different performance requirements, Excelitas offers a wide range of customization of these photodiodes to meet your design challenges. Responsivity and noise screening, custom device testing, TEC cooled devices and incorporating band pass filters are among many of the application-specific solutions available.

Testing methods

Excelitas verifies the electro optical specifications on every device. Visual inspection during fabrication is performed as per our quality standard and failed devices are removed.

Excelitas Technologies is certified to meet ISO-9001 and the photodiode are designed to meet MIL-STD-883 and/or MIL-STD-750 specifications.

Packaging and shipping

All Large Area InGaAs PIN Diodes are shipped in ESD safe plastic trays.

Storage and handling

Excelitas highly recommends to follow the below notes:

- Keep devices in an ESD controlled environment until final assembly.
- Keep package trays closed until final assembly.
- Remove Devices from their trays by using a vacuum pick-up tool (if applicable)
- If a manual picking method is necessary, use a vacuum pick or non-metallic tweezer.
- Do not make contact to the window surface.

Large Area InGaAs PIN Photodiodes

RoHS Compliance

This series of APD diodes are designed and built to be fully compliant with the European Union Directive on restrictions of the use of certain hazardous substances in electrical and electronic equipment.

Warranty

A standard 12-month warranty following shipment applies. Any warranty is null and void if the photodiode window has been opened.

About Excelitas Technologies

Excelitas Technologies is a global technology leader focused on delivering innovative, customized solutions to meet the lighting, detection and other high-performance technology needs of OEM customers.

Excelitas has a long and rich history of serving our OEM customer base with optoelectronic sensors and modules for more than 45 years beginning with PerkinElmer, EG&G, and RCA. The constant throughout has been our innovation and commitment to delivering the highest quality solutions to our customers worldwide.

From aerospace and defense to analytical instrumentation, clinical diagnostics, medical, industrial, and safety and security applications, Excelitas Technologies is committed to enabling our customers' success in their specialty end-markets. Excelitas Technologies has approximately 7,000 employees in North America, Europe and Asia, serving customers across the world.

Excelitas Technologies

22001 Dumberry Road Vaudreuil-Dorion, Quebec Canada J7V 8P7 Telephone: (+1) 450.424.3300 Toll-free: (+1) 800.775.6786 Fax: (+1) 450.424.3345 Excelitas Technologies GmbH & Co. KG Wenzel-Jaksch-Str. 31 D-65199 Wiesbaden Germany Telephone: (+49) 611 492 430 Fax: (+49) 611 492 165 Excelitas Technologies Singapore, Pte. Ltd. 8 Tractor Road Singapore 627969 Telephone: (+65) 6775 2022 (Main number) Telephone: (+65) 6770 4366 (Customer Service) Fax: (+65) 6778-1752

Contact us at http://www.excelitas.com/contact

For a complete listing of our global offices, visit www.excelitas.com/locations © 2021 Excelitas Technologies Corp. All rights reserved. The Excelitas logo and design are registered trademarks of Excelitas Technologies Corp. All other trademarks not owned by Excelitas Technologies or its subsidiaries that are depicted herein are the property of their respective owners. Excelitas reserves the right to change this document at any time without notice and disclaims liability for editorial, pictorial or typographical errors.